Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases
نویسندگان
چکیده
Transglutaminases (TG, E.C. 2.3.2.13) are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2), a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD), one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.
منابع مشابه
Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases
Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several hu...
متن کاملTransglutaminase potentiates ligand-dependent proteasome dysfunction induced by polyglutamine-expanded androgen receptor.
Expansion of the CAG trinucleotide repeat encoding glutamine in the androgen receptor gene leads to spinobulbar muscular atrophy (SBMA), a neurodegenerative disorder in a family of polyglutamine diseases with enigmatic pathogenic mechanisms. One established property of glutamine residues is their ability to act as an amine accepter in a transglutaminase-catalyzed reaction, resulting in a proteo...
متن کاملMolecular mechanisms responsible for the involvement of tissue transglutaminase in human diseases: Celiac Disease.
Tissue transglutaminase (tTG or TG2; E.C. 2.3.2.13) belongs to the transglutaminase family, a group of closely related enzymes that share the ability to catalyze the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. tTG is a multifunctional enzyme since it is also capable of catalyzing other biochemical reactions. The dist...
متن کاملRoles of Dermcidin, Salusin-α, Salusin-β and TNF-α in the Pathogenesis of Human Brucellosis
Background:Brucella spp. are facultative intracellular pathogens that can cause chronic infections in many tissues and organs. Objectives: To investigate serum dermcidin, salusin-alpha, salusin-beta and TNF-alpha levels and their correlation with each other in patients with acute brucellosis. Methods: From 50 patients hospitalized upon...
متن کاملP 155: The Roles of Microglia in Neurodegenerative Diseases
Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...
متن کامل